

Exercise 4.1 - Solar Array

v.01

Problem Statement

The spacecraft from the picture below is submitted to a 0.5 g acceleration during a maneuver.

The solar arrays have a mass power of 45 W/kg

The energy efficiency of the solar cells is 25%

Evaluate

1. The mass of one single solar array wing (hint: take into account the average solar constant).
2. The torque that is applied to the axis during the acceleration.
3. The maximum stress on the axis.
4. Optional: the margin of safety for the fatigue strength of an aluminum tube (A7075-T6).

The maximum allowable stress for aluminum (A7075-T6) is [Pa]:

$$\text{In [Pa]: } \sigma_{al} = 150 \times 10^6;$$

A factor of safety (FOS) of 2 is considered.

Hint: ECSS-E-ST32C Rev.1 section 4.5.16

Solution

Total Solar Irradiance (Solar constant) [W/m²]:

$$In[1]:= C_s = 1362;$$

Mass power [W/kg]:

$$In[2]:= P_m = 45;$$

Energy efficiency:

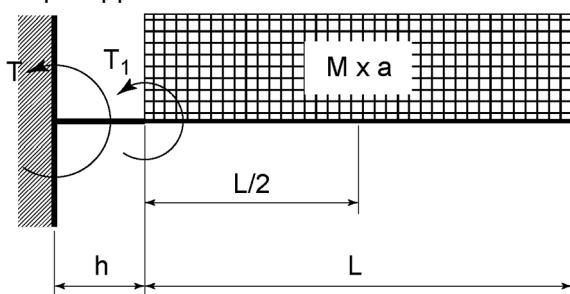
$$In[3]:= \eta = 0.25;$$

Size of the wing [m]:

$$In[4]:= L = 6; \\ W = 1.5;$$

Mass of the wing [kg]:

$$In[5]:= M = \frac{L \cdot W \cdot C_s \cdot \eta}{P_m}$$


$$Out[5]= 68.1$$

Linear mass of the wing [kg/m]:

$$In[6]:= m_l = \frac{M}{L}$$

$$Out[6]= 11.35$$

Torque applied to the axis

Acceleration [m/s²]:

$$In[7]:= a = 0.5 \times 9.81$$

$$Out[7]= 4.905$$

Length of the axis [m]:

$$In[8]:= h = 0.25;$$

Outer diameter of the axis [m]:

$$In[1]:= d_{\text{out}} = 64 \times 10^{-3};$$

Inner diameter of the axis [m]:

$$In[2]:= d_{\text{in}} = 60 \times 10^{-3};$$

Torques

Torque at solar array - tube interface [N·m]:

$$In[3]:= T_1 = M a \frac{L}{2}$$

$$Out[3]= 1002.09$$

Maximum torque [N·m]:

$$In[4]:= T = M a \left(\frac{L}{2} + h \right)$$

$$Out[4]= 1085.6$$

Maximum stress

Area moment of inertia of the axis [m⁴]:

$$In[5]:= I_{\text{axis}} = \frac{\pi (d_{\text{out}}^4 - d_{\text{in}}^4)}{64};$$

Maximum stress on the axis [Pa]:

$$In[6]:= \sigma_{\text{max}} = \frac{T d_{\text{out}}}{2 I_{\text{axis}}}$$

$$Out[6]= 1.85397 \times 10^8$$

Margin of Safety (MOS)

Factor of Safety (FOS):

$$In[7]:= \text{FOS} = 2;$$

Margin of Safety (MOS):

$$In[8]:= \text{MOS} = \frac{\sigma_{\text{al}}}{\sigma_{\text{max}} \text{FOS}} - 1$$

$$Out[8]= -0.595463$$

A margin < 0 is not admissible.

Either the diameter or the material of the axis shall be changed!